Zoomed EPI-DWI of the Pancreas Using Two-Dimensional Spatially-Selective Radiofrequency Excitation Pulses
نویسندگان
چکیده
BACKGROUND Implementation of DWI in the abdomen is challenging due to artifacts, particularly those arising from differences in tissue susceptibility. Two-dimensional, spatially-selective radiofrequency (RF) excitation pulses for single-shot echo-planar imaging (EPI) combined with a reduction in the FOV in the phase-encoding direction (i.e. zooming) leads to a decreased number of k-space acquisition lines, significantly shortening the EPI echo train and potentially susceptibility artifacts. PURPOSE To assess the feasibility and image quality of a zoomed diffusion-weighted EPI (z-EPI) sequence in MR imaging of the pancreas. The approach is compared to conventional single-shot EPI (c-EPI). MATERIAL AND METHODS 23 patients who had undergone an MRI study of the abdomen were included in this retrospective study. Examinations were performed on a 3T whole-body MR system (Magnetom Skyra, Siemens) equipped with a two-channel fully dynamic parallel transmit array (TimTX TrueShape, Siemens). The acquired sequences consisted of a conventional EPI DWI of the abdomen and a zoomed EPI DWI of the pancreas. For z-EPI, the standard sinc excitation was replaced with a two-dimensional spatially-selective RF pulse using an echo-planar transmit trajectory. Images were evaluated with regard to image blur, respiratory motion artifacts, diagnostic confidence, delineation of the pancreas, and overall scan preference. Additionally ADC values of the pancreatic head, body, and tail were calculated and compared between sequences. RESULTS The pancreas was better delineated in every case (23/23) with z-EPI versus c-EPI. In every case (23/23), both readers preferred z-EPI overall to c-EPI. With z-EPI there was statistically significantly less image blur (p<0.0001) and respiratory motion artifact compared to c-EPI (p<0.0001). Diagnostic confidence was statistically significantly better with z-EPI (p<0.0001). No statistically significant differences in calculated ADC values were observed between the two sequences. CONCLUSION Zoomed diffusion-weighted EPI leads to substantial image quality improvements with reduction of susceptibility artifacts in pancreatic DWI.
منابع مشابه
Functional magnetic resonance imaging using non-Fourier, spatially selective radiofrequency encoding.
A new method for functional magnetic resonance imaging (fMRI) employing non-Fourier encoding using spatially selective radiofrequency (RF) excitation is presented. The method uses manipulation of spatially selective RF pulses to encode spins in the slice-select direction. The method has several advantages over standard multislice approaches. It provides a simple means for monitoring irregularly...
متن کاملTwo-dimensional spatially-selective RF excitation pulses in echo-planar imaging.
Two-dimensional spatially-selective RF (2DRF) excitation pulses were developed for single-shot echo-planar imaging (EPI) with reduced field of view (FOV) in the phase-encoding direction. The decreased number of k-space lines significantly shortens the length of the EPI echo train. Thus, both gradient-echo and spin-echo 2DRF-EPI images of the human brain at 2.0 T exhibit markedly reduced suscept...
متن کاملReduced field-of-view excitation using second-order gradients and spatial-spectral radiofrequency pulses.
The performance of multidimensional spatially selective radiofrequency (RF) pulses is often limited by their long duration. In this article, high-order, nonlinear gradients are exploited to reduce multidimensional RF pulse length. Specifically, by leveraging the multidimensional spatial dependence of second-order gradients, a two-dimensional spatial-spectral RF pulse is designed to achieve thre...
متن کاملPhase relaxed localized excitation pulses for inner volume fast spin echo imaging
PURPOSE To design multidimensional spatially selective radiofrequency (RF) pulses for inner volume imaging (IVI) with three-dimensional (3D) fast spin echo (FSE) sequences. Enhanced background suppression is achieved by exploiting particular signal properties of FSE sequences. THEORY AND METHODS The CPMG condition dictates that echo amplitudes will rapidly decrease if a 90° phase difference b...
متن کاملFast Cardiac Imaging using a Novel Reduced-FOV Excitation and EPI Acquisition
Introduction: Single-shot cardiac imaging was first proposed by the Mansfield group in the 1977 [1]. We present new RF pulses to increase acquisition speed in conjunction with single-shot and 2interleaved circular EPI readouts. Methods: Experiments were performed on a GE Signa EXCITE 3.0T system using a custom real-time imaging system [2]. Two new reduced FOV excitation pulses [3] were used whi...
متن کامل